Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nucleic Acids Res ; 52(8): 4466-4482, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567721

RESUMO

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.


Assuntos
Pareamento de Bases , Escherichia coli , Fluoretos , Conformação de Ácido Nucleico , Riboswitch , Transcrição Gênica , Riboswitch/genética , Fluoretos/química , Escherichia coli/genética , Simulação de Dinâmica Molecular , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Dobramento de RNA , Magnésio/química , Sequência de Bases , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Thermus/genética , Thermus/enzimologia
2.
Sci Adv ; 10(17): eadl0164, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657076

RESUMO

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus providing defense from the phages. In addition, Cas13a-mediated tRNA cleavage indirectly activates the RNases of bacterial toxin-antitoxin modules cleaving messenger RNA, which could provide a backup defense. The mechanism of Cas13a-induced antiphage defense resembles that of bacterial anticodon nucleases, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module encompassing an anticodon nuclease.


Assuntos
Anticódon , Sistemas CRISPR-Cas , Escherichia coli , RNA de Transferência , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leptotrichia/genética , Leptotrichia/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Bacteriófagos/genética , Clivagem do RNA
3.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106011

RESUMO

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of E. coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37 °C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65 °C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.

4.
Sci Adv ; 8(47): eabn8650, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427302

RESUMO

CRISPR-Cas systems provide prokaryotes with adaptive immunity against foreign nucleic acids. In Escherichia coli, immunity is acquired upon integration of 33-bp spacers into CRISPR arrays. DNA targets complementary to spacers get degraded and serve as a source of new spacers during a process called primed adaptation. Precursors of such spacers, prespacers, are ~33-bp double-stranded DNA fragments with a ~4-nt 3' overhang. The mechanism of prespacer generation is not clear. Here, we use FragSeq and biochemical approaches to determine enzymes involved in generation of defined prespacer ends. We demonstrate that RecJ is the main exonuclease trimming 5' ends of prespacer precursors, although its activity can be partially substituted by ExoVII. The RecBCD complex allows single strand-specific RecJ to process double-stranded regions flanking prespacers. Our results reveal intricate functional interactions of genome maintenance proteins with CRISPR interference and adaptation machineries during generation of prespacers capable of integration into CRISPR arrays.

5.
Comput Struct Biotechnol J ; 20: 2624-2638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685363

RESUMO

RNA sequencing has become the method of choice to study the transcriptional landscape of phage-infected bacteria. However, short-read RNA sequencing approaches generally fail to capture the primary 5' and 3' boundaries of transcripts, confounding the discovery of key transcription initiation and termination events as well as operon architectures. Yet, the elucidation of these elements is crucial for the understanding of the strategy of transcription regulation during the infection process, which is currently lacking beyond a handful of model phages. We developed ONT-cappable-seq, a specialized long-read RNA sequencing technique that allows end-to-end sequencing of primary prokaryotic transcripts using the Nanopore sequencing platform. We applied ONT-cappable-seq to study transcription of Pseudomonas aeruginosa phage LUZ7, obtaining a comprehensive genome-wide map of viral transcription start sites, terminators, and complex operon structures that fine-regulate gene expression. Our work provides new insights in the RNA biology of a non-model phage, unveiling distinct promoter architectures, putative small non-coding viral RNAs, and the prominent regulatory role of terminators during infection. The robust workflow presented here offers a framework to obtain a global, yet fine-grained view of phage transcription and paves the way for standardized, in-depth transcription studies for microbial viruses or bacteria in general.

6.
Nucleic Acids Res ; 50(2): 1162-1173, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34951459

RESUMO

CRISPR RNAs (crRNAs) that direct target DNA cleavage by Type V Cas12a nucleases consist of constant repeat-derived 5'-scaffold moiety and variable 3'-spacer moieties. Here, we demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by a Cas12a ortholog from Acidaminococcus sp. (AsCas12a). In fact, residual cleavage was observed even in the presence of a 20-nucleotide crRNA spacer moiety only. crRNAs split into separate scaffold and spacer RNAs catalyzed highly specific and efficient cleavage of target DNA by AsCas12a in vitro and in lysates of human cells. In addition to dsDNA target cleavage, AsCas12a programmed with split crRNAs also catalyzed specific ssDNA target cleavage and non-specific ssDNA degradation (collateral activity). V-A effector nucleases from Francisella novicida (FnCas12a) and Lachnospiraceae bacterium (LbCas12a) were also functional with split crRNAs. Thus, the ability of V-A effectors to use split crRNAs appears to be a general property. Though higher concentrations of split crRNA components are needed to achieve efficient target cleavage, split crRNAs open new lines of inquiry into the mechanisms of target recognition and cleavage and may stimulate further development of single-tube multiplex and/or parallel diagnostic tests based on Cas12a nucleases.


Assuntos
Acidaminococcus , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Acidaminococcus/genética , Acidaminococcus/metabolismo , Clivagem do DNA , Francisella/genética , Francisella/metabolismo , Edição de Genes
7.
J Biol Chem ; 295(19): 6509-6517, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32241913

RESUMO

The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9-gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9-gRNA, SaCas9-gRNA, and FnCas9-gRNA, respectively) and of three engineered SpCas9-gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a "beacon" assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9-gRNA binding to fluorescently labeled target DNA derivatives called "Cas9 beacons." We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9-gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency.


Assuntos
Proteína 9 Associada à CRISPR/química , Sistemas CRISPR-Cas , Francisella/química , RNA Bacteriano/química , RNA Guia de Cinetoplastídeos/química , Staphylococcus aureus/química , Streptococcus pyogenes/química
8.
Nucleic Acids Res ; 48(1): 445-459, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31724707

RESUMO

Bacterial viruses encode a vast number of ORFan genes that lack similarity to any other known proteins. Here, we present a 2.20 Å crystal structure of N4-related Pseudomonas virus LUZ7 ORFan gp14, and elucidate its function. We demonstrate that gp14, termed here as Drc (ssDNA-binding RNA Polymerase Cofactor), preferentially binds single-stranded DNA, yet contains a structural fold distinct from other ssDNA-binding proteins (SSBs). By comparison with other SSB folds and creation of truncation and amino acid substitution mutants, we provide the first evidence for the binding mechanism of this unique fold. From a biological perspective, Drc interacts with the phage-encoded RNA Polymerase complex (RNAPII), implying a functional role as an SSB required for the transition from early to middle gene transcription during phage infection. Similar to the coliphage N4 gp2 protein, Drc likely binds locally unwound middle promoters and recruits the phage RNA polymerase. However, unlike gp2, Drc does not seem to need an additional cofactor for promoter melting. A comparison among N4-related phage genera highlights the evolutionary diversity of SSB proteins in an otherwise conserved transcription regulation mechanism.


Assuntos
DNA de Cadeia Simples/química , DNA Viral/química , Proteínas de Ligação a DNA/química , Fagos de Pseudomonas/genética , Pseudomonas/virologia , Proteínas Virais/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Clonagem Molecular , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Fagos de Pseudomonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Methods Enzymol ; 616: 337-363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30691650

RESUMO

CRISPR-Cas systems protect prokaryotic cells from invading phages and plasmids by recognizing and cleaving foreign nucleic acid sequences specified by CRISPR RNA spacer sequences. Several CRISPR-Cas systems have been widely used as tool for genetic engineering. In DNA-targeting CRISPR-Cas nucleoprotein effector complexes, the CRISPR RNA forms a hybrid with the complementary strand of foreign DNA, displacing the noncomplementary strand to form an R-loop. The DNA interrogation and R-loop formation involve several distinct steps the molecular details of which are not fully understood. This chapter describes a recently developed fluorometric Cas beacon assay that may be used for measuring of specific affinity of various CRISPR-Cas complexes for unlabeled target DNA and model DNA probes. The Cas beacon approach also can provide a sensitive method for monitoring the kinetics of assembly of CRISPR-Cas complexes.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , Sondas de DNA/metabolismo , Fluorometria/métodos , RNA Guia de Cinetoplastídeos/metabolismo
10.
Nucleic Acids Res ; 46(8): 4087-4098, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29596641

RESUMO

In type I CRISPR-Cas systems, primed adaptation of new spacers into CRISPR arrays occurs when the effector Cascade-crRNA complex recognizes imperfectly matched targets that are not subject to efficient CRISPR interference. Thus, primed adaptation allows cells to acquire additional protection against mobile genetic elements that managed to escape interference. Biochemical and biophysical studies suggested that Cascade-crRNA complexes formed on fully matching targets (subject to efficient interference) and on partially mismatched targets that promote primed adaption are structurally different. Here, we probed Escherichia coli Cascade-crRNA complexes bound to matched and mismatched DNA targets using a magnetic tweezers assay. Significant differences in complex stabilities were observed consistent with the presence of at least two distinct conformations. Surprisingly, in vivo analysis demonstrated that all mismatched targets stimulated robust primed adaptation irrespective of conformational states observed in vitro. Our results suggest that primed adaptation is a direct consequence of a reduced interference efficiency and/or rate and is not a consequence of distinct effector complex conformations on target DNA.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/genética , Proteínas Associadas a CRISPR/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Clivagem do DNA , Escherichia coli/metabolismo , Mutação , Conformação Proteica
11.
ACS Chem Biol ; 12(3): 814-824, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28106375

RESUMO

We report the bioinformatic prediction and structural validation of two lasso peptides, acinetodin and klebsidin, encoded by the genomes of several human-associated strains of Acinetobacter and Klebsiella. Computation of the three-dimensional structures of these peptides using NMR NOESY constraints verifies that they contain a lasso motif. Despite the lack of sequence similarity to each other or to microcin J25, a prototypical lasso peptide and transcription inhibitor from Escherichia coli, acinetodin and klebsidin also inhibit transcript elongation by the E. coli RNA polymerase by binding to a common site. Yet, unlike microcin J25, acinetodin and klebsidin are unable to permeate wild type E. coli cells and inhibit their growth. We show that the E. coli cells become sensitive to klebsidin when expressing the outer membrane receptor FhuA homologue from Klebsiella pneumoniae. It thus appears that specificity to a common target, the RNA polymerase secondary channel, can be attained by a surprisingly diverse set of primary sequences folded into a common threaded-lasso fold. In contrast, transport into cells containing sensitive targets appears to be much more specific and must be the major determinant of the narrow range of bioactivity of known lasso peptides.


Assuntos
Acinetobacter/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Klebsiella pneumoniae/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Antibacterianos/farmacologia , Humanos , Proteólise
12.
Nucleic Acids Res ; 44(22): 10849-10861, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27738137

RESUMO

The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo Shortened crRNAs assemble into altered-stoichiometry Cascade effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multisubunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.


Assuntos
Escherichia coli/genética , Adaptação Fisiológica , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Interferência de RNA , RNA Bacteriano/fisiologia
13.
Nucleic Acids Res ; 44(6): 2837-45, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26945042

RESUMO

CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR-Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3'-terminal segments. This result implies that the 3'-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3'-terminal stem loops leads to reduced activity during genomic editing.


Assuntos
Bioensaio , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Oligonucleotídeos/metabolismo , RNA Guia de Cinetoplastídeos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Proteína 9 Associada à CRISPR , Endonucleases/genética , Endonucleases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Dados de Sequência Molecular , Oligonucleotídeos/síntese química , Ligação Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/genética
14.
PLoS One ; 10(12): e0144940, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26670620

RESUMO

Factor XIIa (fXIIa) is a serine protease that triggers the coagulation contact pathway and plays a role in thrombosis. Because it interferes with coagulation testing, the need to inhibit fXIIa exists in many cases. Infestin-4 (Inf4) is a Kazal-type inhibitor of fXIIa. Its specificity for fXIIa can be enhanced by point mutations in the protease-binding loop. We attempted to adapt Inf4 for the selective repression of the contact pathway under various in vitro conditions, e.g., during blood collection and in 'global' assays of tissue factor (TF)-dependent coagulation. First, we designed a set of new Inf4 mutants that, in contrast to wt-Inf4, had stabilized canonical conformations during molecular dynamics simulation. Off-target activities against factor Xa (fXa), plasmin, and other coagulation proteases were either reduced or eliminated in these recombinant mutants, as demonstrated by chromogenic assays. Interactions with fXIIa and fXa were also analyzed using protein-protein docking. Next, Mutant B, one of the most potent mutants (its Ki for fXIIa is 0.7 nM) was tested in plasma. At concentrations 5-20 µM, this mutant delayed the contact-activated generation of thrombin, as well as clotting in thromboelastography and thrombodynamics assays. In these assays, Mutant B did not affect coagulation initiated by TF, thus demonstrating sufficient selectivity and its potential practical significance as a reagent for coagulation diagnostics.


Assuntos
Fator XIIa/antagonistas & inibidores , Proteínas de Insetos/farmacologia , Proteínas Mutantes/farmacologia , Sequência de Aminoácidos , Coagulação Sanguínea/efeitos dos fármacos , Desenho de Fármacos , Fator XIIa/metabolismo , Fator Xa/metabolismo , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Cinética , Dados de Sequência Molecular , Proteínas de Plantas/farmacologia , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , Especificidade por Substrato , Tiorredoxinas/metabolismo
15.
Nucleic Acids Res ; 43(12): 6049-61, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26013814

RESUMO

CRISPR-Cas are small RNA-based adaptive prokaryotic immunity systems protecting cells from foreign DNA or RNA. Type I CRISPR-Cas systems are composed of a multiprotein complex (Cascade) that, when bound to CRISPR RNA (crRNA), can recognize double-stranded DNA targets and recruit the Cas3 nuclease to destroy target-containing DNA. In the Escherichia coli type I-E CRISPR-Cas system, crRNAs are generated upon transcription of CRISPR arrays consisting of multiple palindromic repeats and intervening spacers through the function of Cas6e endoribonuclease, which cleaves at specific positions of repeat sequences of the CRISPR array transcript. Cas6e is also a component of Cascade. Here, we show that when mature unit-sized crRNAs are provided in a Cas6e-independent manner by transcription termination, the CRISPR-Cas system can function without Cas6e. The results should allow facile interrogation of various targets by type I-E CRISPR-Cas system in E. coli using unit-sized crRNAs generated by transcription.


Assuntos
Proteínas Associadas a CRISPR/fisiologia , Sistemas CRISPR-Cas , Endorribonucleases/fisiologia , Escherichia coli/genética , Bacteriófagos/genética , Proteínas Associadas a CRISPR/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Plasmídeos/genética , RNA/metabolismo , Terminação da Transcrição Genética
16.
Nucleic Acids Res ; 43(1): 530-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25488810

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated Cas proteins comprise a prokaryotic RNA-guided adaptive immune system that interferes with mobile genetic elements, such as plasmids and phages. The type I-E CRISPR interference complex Cascade from Escherichia coli is composed of five different Cas proteins and a 61-nt-long guide RNA (crRNA). crRNAs contain a unique 32-nt spacer flanked by a repeat-derived 5' handle (8 nt) and a 3' handle (21 nt). The spacer part of crRNA directs Cascade to DNA targets. Here, we show that the E. coli Cascade can be expressed and purified from cells lacking crRNAs and loaded in vitro with synthetic crRNAs, which direct it to targets complementary to crRNA spacer. The deletion of even one nucleotide from the crRNA 5' handle disrupted its binding to Cascade and target DNA recognition. In contrast, crRNA variants with just a single nucleotide downstream of the spacer part bound Cascade and the resulting ribonucleotide complex containing a 41-nt-long crRNA specifically recognized DNA targets. Thus, the E. coli Cascade-crRNA system exhibits significant flexibility suggesting that this complex can be engineered for applications in genome editing and opening the way for incorporation of site-specific labels in crRNA.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Associadas a CRISPR/isolamento & purificação , Proteínas de Escherichia coli/isolamento & purificação , Ligação Proteica , RNA Guia de Cinetoplastídeos/química
17.
J Bacteriol ; 196(19): 3377-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25002546

RESUMO

Peptide-nucleotide antibiotic microcin C (McC) is produced by some Escherichia coli strains. Inside a sensitive cell, McC is processed, releasing a nonhydrolyzable analog of aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. The product of mccE, a gene from the plasmid-borne McC biosynthetic cluster, acetylates processed McC, converting it into a nontoxic compound. MccE is homologous to chromosomally encoded acetyltransferases RimI, RimJ, and RimL, which acetylate, correspondingly, the N termini of ribosomal proteins S18, S5, and L12. Here, we show that E. coli RimL, but not other Rim acetyltransferases, provides a basal level of resistance to McC and various toxic nonhydrolyzable aminoacyl adenylates. RimL acts by acetylating processed McC, which along with ribosomal protein L12 should be considered a natural RimL substrate. When overproduced, RimL also makes cells resistant to albomycin, an antibiotic that upon intracellular processing gives rise to a seryl-thioribosyl pyrimidine that targets seryl-tRNA synthetase. We further show that E. coli YhhY, a protein related to Rim acetyltransferases but without a known function, is also able to detoxify several nonhydrolyzable aminoacyl adenylates but not processed McC. We propose that RimL and YhhY protect bacteria from various toxic aminoacyl nucleotides, either exogenous or those generated inside the cell during normal metabolism.


Assuntos
Acetiltransferases/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/toxicidade , Ácido Aspártico/análogos & derivados , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Iniciação Traducional da Cadeia Peptídica , Acetiltransferases/genética , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Ácido Aspártico/toxicidade , Bacteriocinas/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos
18.
Nucleic Acids Res ; 42(3): 1619-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24234452

RESUMO

Maintenance of nucleosomal structure in the cell nuclei is essential for cell viability, regulation of gene expression and normal aging. Our previous data identified a key intermediate (a small intranucleosomal DNA loop, Ø-loop) that is likely required for nucleosome survival during transcription by RNA polymerase II (Pol II) through chromatin, and suggested that strong nucleosomal pausing guarantees efficient nucleosome survival. To evaluate these predictions, we analysed transcription through a nucleosome by different, structurally related RNA polymerases and mutant yeast Pol II having different histone-interacting surfaces that presumably stabilize the Ø-loop. The height of the nucleosomal barrier to transcription and efficiency of nucleosome survival correlate with the net negative charges of the histone-interacting surfaces. Molecular modeling and analysis of Pol II-nucleosome intermediates by DNase I footprinting suggest that efficient Ø-loop formation and nucleosome survival are mediated by electrostatic interactions between the largest subunit of Pol II and core histones.


Assuntos
Nucleossomos/química , RNA Polimerase II/química , Transcrição Gênica , Histonas/química , Modelos Moleculares , Nucleossomos/metabolismo , RNA Polimerase II/metabolismo , Eletricidade Estática , Thermus/enzimologia , Thermus thermophilus/enzimologia , Elongação da Transcrição Genética
19.
Nucleic Acids Res ; 40(22): 11352-62, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23087380

RESUMO

Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particularly at temperatures below 37°C. Here, we used a fluorometric RNAP molecular beacon assay to discern partial RNAP-promoter interactions. We quantitatively compared the strength of E. coli and Taq RNAPs partial interactions with the -10, -35 and UP promoter elements; the TG motif of the extended -10 element; the discriminator and the downstream duplex promoter segments. We found that compared with Taq RNAP, E. coli RNAP has much higher affinity only to the UP element and the downstream promoter duplex. This result indicates that the difference in stability between E. coli and Taq promoter complexes is mainly determined by the differential strength of core RNAP-DNA contacts. We suggest that the relative weakness of Taq RNAP interactions with DNA downstream of the transcription start point is the major reason of low stability and temperature sensitivity of promoter complexes formed by this enzyme.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Regiões Promotoras Genéticas , Fator sigma/metabolismo , Thermus/enzimologia , Iniciação da Transcrição Genética , Sequência de Bases , DNA/química , DNA/metabolismo , Sondas de DNA , DNA de Cadeia Simples/química , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Fluorometria/métodos , Temperatura Alta , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Fator sigma/química , Especificidade da Espécie , Thermus/genética
20.
Nucleic Acids Res ; 40(9): 4052-63, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22238378

RESUMO

Gp39, a small protein encoded by Thermus thermophilus phage P23-45, specifically binds the host RNA polymerase (RNAP) and inhibits transcription initiation. Here, we demonstrate that gp39 also acts as an antiterminator during transcription through intrinsic terminators. The antitermination activity of gp39 relies on its ability to suppress transcription pausing at poly(U) tracks. Gp39 also accelerates transcription elongation by decreasing RNAP pausing and backtracking but does not significantly affect the rates of catalysis of individual reactions in the RNAP active center. We mapped the RNAP-gp39 interaction site to the ß flap, a domain that forms a part of the RNA exit channel and is also a likely target for λ phage antiterminator proteins Q and N, and for bacterial elongation factor NusA. However, in contrast to Q and N, gp39 does not depend on NusA or other auxiliary factors for its activity. To our knowledge, gp39 is the first characterized phage-encoded transcription factor that affects every step of the transcription cycle and suppresses transcription termination through its antipausing activity.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Terminadoras Genéticas , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/química , Modelos Moleculares , Oligonucleotídeos , Domínios e Motivos de Interação entre Proteínas , RNA/metabolismo , Thermus thermophilus/enzimologia , Thermus thermophilus/virologia , Fatores de Transcrição/química , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA